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An a n a l @ . a  has bwn made of a"irf'oil data taken on several 
IiACA l&eriee propeiler a i r fo i l s  from test6 of F-incfi-chord modelo 
irr  the Langley 2!Liach hfgh-speed tuonel and l2-inchrchard m o d e l s  
in the.La#ey &foot higiGepeed t;umel, 

. T h l s  analysis has shown tbat%he sambined ef fec ts  of Reynolds 
mxtiber changes and vertatioae in a i r f o i l  character ie t ics  resultiw 
from differences i n  models and tunnels are such that when >inch- 
chord and l2-inch-chord data are applied 60 full-scale propeller 
design a t  or near the design condition, differences of l e s s  than 
1 percent i n  efficiency w i l l .  be involved. 

The design of j?reaent-day propellera is u s u a l 3 ~  Sa138d 3pon data 
obtained under conditions of scale which difgor frou! those of o p m t i m .  
These propellers are  made up t o  a great degree of high-speed a ir fo i l  
3ectlon8, data for which a r e  Dbttsined f'rm teerts of models of 2- t o  
>inch chord. 
WACA l h e r i e s  airfoil sections heve been conducted on blades of this 
same width. 

I n  addition, met of the t e s t s  of m d - e l  propellers us- 

The questionthsrefca-e has arisen as t o  the va l id i ty  of a p p l y i q  
these test  data d i r e c t u  t o  larger m a l e  rlesigu. 

I n  order t o  provide a t  least E qualitative answer to these 
nr ,an+9  A*- 
yLrvuUIV;4), ~ i i  -lpIcj h a  t t v a  i&e or" 13me irate zvaiiable on 
several  NACA &series a i r f o i l s  of both 5- and l.2-inch chord. 
comparioon of data from Kr and E-inch-chord a i r f o i l s  has addit ional  
sigaificance because a 12-inch chord is rspresentative of blade 
widths ccmmonly used on full-scale propellers.  

A 
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APPARATUS A~VD ‘METHODS 

The t e s t s  were mde iii the Langley %foot high-speed tunnel 
and i n  the Langley 24-inch high-speed tunnel. 
high-speed tunnel i s  a closed-thrcat single-return tunnel and a t  
the timc of these t e s t s  the speed w a 8  continuously controllable up 
t o  a Mach number of approximately 0.70. The Langley 24-inch hieh- 
speed tunnel i s  a nonreturn induction-type tunnel with the speed 
continuously controllable t o  a Mach nuuber of approximately 0.30 
for  a F inch ,  l%percont-thick a i r f  oj 1, Bot,h tunnels hav\. 
degrees of turbulence which a r e  sniall though s l igh t ly  higher than 
that of f ree  a i r .  
the jet; thus, the r e su l t s  a re  emen t i a l ly  twdimenaional .  

The Langley &foot 

I n  both tunnels the mddals completely spanned 

The chord of the models tested i n  the Langley &foot; high-speed 
tunnel was 12 inches; t ha t  of the models tested In the  Langley 2 b i n c h  
high-speed tunnel was 5 inches. 
ing NACA & s e r i e s  sections : 
and 16-715, tha t  i a ,  sectYons havinc thicknem r a t i o s  of 0.09 and 
0.15 and having design l i f t  coefficients of 0.2, 0.5, and 0.7.  

The a i r f o i l s  tes ted were tho follow- 
36-209, 1-17, lG509, 16,515, 16-709, 

The data Gbtainbd wesc l i f t ,  drag, and pitching moment. The 
data on the Finch-chord a i r f o i l s  were obtained by neans of force 
measurement& i n  the Lzangley &-inch tunnel .I For the 12-inch-ohord 
a i r f o j l s  the l i f t  and moaent data were obtained fram pressure-, 
dis t r ibut ion measurements and the drag data were obtained by mean6 
of wake supeys .  
nlxmber fo r  the a i r f o i l s  a s  tested i s  shown i n  f igure 1. 

The average variation of Roynold&nnumbcr wlth Mach 
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SYia3OLS 

, .. 
Mach number 

Reynolds number 

angle of attack, degreos 

section l i f t  coefficient 

section q mr t cr-chord p i t c hing-moment c oe f f i c i erit 

dc2/6a l if t-curve slope 

C d  section drag coefficient 
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Ql0 = t an  -1 v, 
mnn. 

V f&d velocity 

zotat ional  speed n .  , .  

. .  .- . 

. .  
. .  

D propeller diameter 

X radius mtio 

ai .induced s q l e  of attack 

.y = tan -1 9 
cl 

The chengss which occ~m in airfoil character is t ics  such as 
dmg and maxirm;lo f i f c  cmf f i c i en t  with changes i n  the  valde of 
Rejmolde nmber are dlrectlg- connected wlth the action of. the 
bwq€er3 layer on the f l c w  ov9r tLe airI"ol1. 
mechanics of these flow chmges is contained i n  refersnce 1. 

A discussion of the 

The variations of l i f t  coefffcient w i t h  angle D f  a t tack f o r  
the a i r f o i l s  tested a r s  cmparcd In f p p r e  2. Die t o  the f a c t  that 
the  teste w e m  made with different  sized models of the same a i r f o i l  
sections and because the mcrdels were t es ted  in different  t u n n e l s ,  
variations In the  data e r e  t o  be eqec ted  as a reeul t  of i r idividual  
m o d e l  irregularities, f a i lu re  t o  exactly duplicate model e f i n a e n t ,  
and slightly dffferent wall effects .  For these reasons, oal;r the 
shape and character of the  curve^ i n  f fgwe 2 should be ccanpared. 

The most notjceable effects  of difference in  Reynolds number 
a re  a l igh t  changes i n  l i f t - c w v e  slope and differences i n  the 
character of the brezk i n  the l i f t  : m e  correspcndjng t o  t h e  end 
of the Low-dra~ region. 
thicker airfoils. 

These effects are  more marked f o r  tlze 

The v ~ r i a t i c n  ::lth Wch iluca'ber or̂  tne lift--curve slope, tnken 
in the  desi* l i f t  mnge, f o r  the a i r f o i l s  of different  3 - i : ~  13 
presented i~ figure 3. 
althou& marked differences occur for tihe NACA l6-2Cg and 1 6 7 1 ' j  a i r -  
foils above a Fich num3er of 0.60. 

Tho differences i n  slope are generhlly mall 
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If  the moment coefficients of two a i r f o i l s  a r e  cmpared a t  a 
given value of l i f t  coefficient,  an indication of differences i n  
load dis t r ibut ion is  obtained. When t h i s  procedure is  applied t o  
data f o r  two geometrically similar a i r f o i l s  t es ted  under different  
conditions of scale, an indication of fundamental-flow changes is 
obtained. Therefore, the var ia t ion of pitching-ent coefficient 
w i t h  l i f t  coefficient for several  a i r f o i l s  is  presented i n  figure 4. 
Analysis of these data indicates that the fundamental-flow changes, 
which may be due t o  scale  e f fec ts  or  model i r regular i t ies ,  a r e  small .  
The most noticeable differences occw a t  l i f t  coefficienta corre- 
sponding to the end of the region of low drag. These differences 
indicate that the l i f t  coefficient a t  which t r ans i t i on  occurs 
decreases a8 the Reynolds number is increased, as has been pointed 
cut i n  reference 1. 
a i r f o i l s .  The differtinces between t h o  data f o r  the 5- and E-inch 
NACA 16-509 and 16-5Pj a i r f o i l s  suggest individual model i r r egu la r i t i e s .  

This effeot  is apparent f o r  the thicker 

Because boundary-lager changes a r e  involved it i e  t o  be expected 
that with changes i n  Xeynol.ds number t.ho drag character is t ics  w i l l  
be affected t o  a greater d e g e o  than t h e  l i f t  and moment character- 
i s t i c s .  
f o r  f o u r  a i r f o i l s ,  tlis HAC-! 1&20g, 16-215, 16-709, and 16--r(13, a t  
two valum of Mach number a re  S!I.GTE ir! f igure 3. 

The variatioiis of drag cocff?:cient w i t h  1 i f t . coe f f i c i en t  

In figure 6, curves cl“ th:: v 9 r  7 i t  ions of skin-frict9on drag 
coefficient wit11 Reymlds  xmbcr 707 3 f l a t  p l a t e  are  presented. 
These curves a re  baEed e-1 t ~ e  l a ~ ~ . ~ ~ ; i ? r  and turbulent laws fo r  skin- 
f r i c t ion  drag (reference 2) and snow ‘now the drag coefficiont 
decreases as the Reg’nolda nu-%%* i o  lncrcasod, for a given r e g b e .  
For the combined drag coefficient of both surfaces, 

. .  the laminar l a w  i s  

. , the  turbulent law is  

3 ( R )  

The pcints plotted on figure 6 a r e  the values of miiiimim drag 
coefflcient tzken from f i s r c  5 .  
limit8 of the’ laninar and t-ubulent curves. It has be?-7 ?.-lp>:. a, i n  
reference 1, +,lint wlAgh a i r f o i l  surfaces give drag co::”-~.:bLcl;~:: w e l l  
above the tu&uien$ skin-friction curve. The r e l a t ive  pcb25iiun of the 

These data a re  general-j.y T:!*,hin the 
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data for  a given a i r f a i l  betwsen fhe lmdnar and t u r b u l u n t ~ c ~ e s  
depends on scale  e f f ec t s  and factors such as pregkure gradients 
and surfat% r'bizghne'ss -nhl&it agfwt: $oun@rq-hqer tramttion-. 

fop th& %?CA L L A 9  81iLlffii Ae s e p d e d  Sln.-re??erqce 3. 
we:-e ob'talule& Pn one %tunnel under c'onditicma of l o w  turbulence. 
The similar i ty  Wetxe&'the treniis of tho 
number shown by the dsta-'talren frm reference 3 and those reported 
herein, indicate the% the  rri%her large diffarence i n  the drag as 
o b t a i k d  'fn thg LaI&ey &foo$ high-speed tunnel End the Langley 2 b i n c h  
high-qeed tunnel is a c t u a l 3  a $scale effect ,  find is not caused by 
differences i n  tunnel t e s t  t e c h n i q u e s  or model suzface conGition. 

- 6 -4 ' 7 , '  I , * , .  . ,  a * .  .; ^.. . - .  
&c&ieti in Ti@'e' 6 I& the  'vvarAat&a of' minitmum drag coefflcienk 

Theee data 

variation with'Repclds 

The differences in slope of the 'vaz-iation of drag coefficient 
with Reynolds number for thcl Finch-chord a i r f o i l s  a s  cmpared with 
the-lQO9 data frm reference 3 are ascribsd t o  c o q x e s s i h i l i t y  
e f f ec t s  which result 'in ghe ctee_oerClng of the  prezsure-recovery 
wadienis  &er the sfifSS*h. 
will be%&% prmounce'd f o r  th'?,ck airfoils as is ilLwfsoted'by 
the relatively s l igh t  v a r i a t i w  of drag coeff ic ieat  wi%h Riynolde 
riumber for  the NACA 1-13 and 16-715. 
increassd rgcovery phd ien t s  i n  critioalBe,-nolds number ranges ere  
further iUds t ra ted  by t he  Increases i n  value of ?Tag coefficient 
a8 the thickness and caberbare increzsed. 

Xi%: I s  to be expected t h a t  these e f f ec t s  

The adverse e f fec ts  of 

In considering the application of these data t o  Eropeller design, 
it should be pointed oizt t ha t  changes i n  drag coefficient of the order 
of those fomd i n  f i g m e  6 w i l l  have ordy a small ef fec t  on propeller 
perfoAmance a t  design conditions.'becauee a t  these conditions the 
l i f t -drag  r a t i o  is high and, aislce.the elemental efficiency is 

t he  changes in'effzciency will be af smil oraer.. - 
Uind-t-qnnqlmodeis e r e  c-full;. prepared and nqintained; whereas 

i n  ac tua l  cperation manufkctming i r regular i t ies  and surface roughoese 
w i l l  probskly produce values of drag coefficient sloaer t o  those 
obtained on the '/-Inch-chord models. 
chorcl c l ~ t e  do co t  r z p c r ; e n t  t r - i c  XiGltiyiiS ~ . f  Ecaie, tney m y  be 
safely used t o  est-te propeller performance. For example, the  
difserenceein efficiency canputed by the  above re la t ion  based upon 
t k s  differences i n  drag coefficient for the 5 and 12-inch-chord 
a i r foi ls  w i l l  be of the order of 0.6 percent if  it is  assmed that 
for a typica l  propeller the  reqresentative sections over the  &portant 

Thersfore, altho@ the >inch- 
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area ofthc hlade  have thickness ratloo of 0.09 or less and are 
cambered to give a design lift coefficient of 0.5. 
of efficiency will hold for a range of lift coefficient f O . l  from 
design at trahnes of Mach number up to 0.50. 
cembered aections are used or the blade is operated away f'ramthe 
design condition, differences greater than 1 percent may be 
expected. 
than those presented fir the l&incbchord a i r fo i l s ,  the differences 
in  efficiency will be Bmaller. Moreover, use of the 5inch-chord 
data gives a more conservative estimate of efficiency. 

This difference 

If thlcker or lower 

If, however, operational drag coefficients are higher 

I 

CONCLUSION 

.1. Differences of less than 1 peroent in propeller efficiency 
at or near the design condition will be involved in applylng data 
from Finch-chord and lsinch-chord airfoil testa to full-scale 
propeller des Ign. 

Langley Memorial Aeronautical Laboretory 
Natlonal Adviaory Comaittee for Aeronautico 

Langley Field, Va., August 21, 1947 
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